Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles.

نویسندگان

  • Akos Koller
  • Zsolt Bagi
چکیده

The role of metabolic factors derived from cardiac muscle in the development of reactive hyperemia after brief occlusions of the coronary circulation seems to be well established. However, the contribution of occlusion-induced changes in hemodynamic forces to eliciting reactive hyperemia is less known. We hypothesized that in isolated coronary arterioles changes in intraluminal pressure and flow, during and after release of occlusion (O/R), themselves via activating intrinsic mechanosensitive mechanisms, elicit release of vasoactive factors resulting in reactive dilations. Thus in isolated coronary arterioles (diameter: 88 +/- 8 microm) changes in diameter to changes in pressure or pressure plus flow (P+F) during and after a brief period (30, 60, and 120 s) of O/R of cannulating tube were measured by videomicroscopy. In response to both types of O/R, diameter first decreased, then, subsequently increased during occlusions. When only pressure was changed (from 80-10-80 mmHg), after release of occlusion, peak dilations increased as a function of the duration of occlusions. After flow was established (30 microl/min), O/R elicited changes in both pressure and flow (from 80-10-80 mmHg and from 0 to 30 microl/min). In these conditions, after the release of occlusions, not only the peak but also the duration of reactive dilation increased significantly as a function of the length of occlusions. The dilations during, and peak dilations after occlusions both in pressure and P+F protocols were significantly reduced by the inhibition of NO synthase with Nomega-nitro-L-arginine-methyl-ester (L-NAME) or by endothelium removal, whereas duration of postocclusion dilations were reduced by L-NAME or by endothelium removal only in P+F protocols. Furthermore, in both protocols, catalase significantly reduced the peak but not the duration of reactive dilations. Thus, mechanosensitive mechanisms that are sensitive to deformation, pressure, stretch, and wall shear stress elicit release of NO and H2O2, resulting in reactive dilation of isolated coronary arterioles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide.

OBJECTIVE Exercise training has been shown to restore vasodilation to nitric oxide synthase (NOS) activation in arterioles distal to coronary artery occlusion. Because reactive oxygen species are generated during NOS uncoupling and the production of vasodilator H2O2 is increased during exercise in patients with coronary disease, we proposed that H2O2 may contribute to the restoration of vasodil...

متن کامل

Upregulation of arginase by H2O2 impairs endothelium-dependent nitric oxide-mediated dilation of coronary arterioles.

OBJECTIVE Overproduction of reactive oxygen species such as hydrogen peroxide (H2O2) has been implicated in various cardiovascular diseases. However, mechanism(s) underlying coronary vascular dysfunction induced by H2O2 is unclear. We studied the effect of H2O2 on dilation of coronary arterioles to endothelium-dependent and endothelium-independent agonists. METHODS AND RESULTS Porcine coronar...

متن کامل

Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels.

Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm...

متن کامل

Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation.

RATIONALE Mitochondrial-derived hydrogen peroxide (H2O2) regulates flow-induced dilation (FID) in microvessels from patients with coronary artery disease. The relationship between ceramide, an independent risk factor for coronary artery disease and a known inducer of mitochondrial reactive oxygen species, and FID is unknown. OBJECTIVE We examined the hypothesis that exogenous ceramide induces...

متن کامل

CALL FOR PAPERS Cardiovascular-Renal Mechanisms in Health and Disease The mechanism of flow-induced dilation in human adipose arterioles involves hydrogen peroxide during CAD

Phillips SA, Hatoum OA, Gutterman DD. The mechanism of flowinduced dilation in human adipose arterioles involves hydrogen peroxide during CAD. Am J Physiol Heart Circ Physiol 292: H93–H100, 2007. First published October 13, 2006; doi:10.1152/ajpheart.00819.2006.— Flow-induced dilation (FID) is an important physiological stimulus that regulates tissue blood flow and is mediated by endotheliumder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 6  شماره 

صفحات  -

تاریخ انتشار 2004